One Novel Red-luminescent Coordination Polymer of Eu-*p*-benzenedicarboxylate with Nitrogen-donor-containing Lewis Base

Ming Zhao WANG¹*, Jiang Bin XIA¹, Lin Pei JIN¹, Guan Liang CAI²

¹Department of Chemistry, Beijing Normal University, Beijing 100875 ²Chemical Defense Institute, PLA, Beijing 102205

Abstract: The crystal structure of novel coordination polymer with excellent characteristic luminescence of Eu^{3+} , the three-dimensional network of $\{Eu_2(p-BDC)_3(Phen)_2(H_2O)_2\}_n$ is presented.

Keywords: Europium, *p*-benzenedicarboxylate, Phenanthroline, coordination polymer, luminescence.

Benzenedicarboxylic acid (H₂BDC) has constructed many extended structures¹, including the late interesting three-dimensional networks of lanthanide-BDC^{1a, b}. To our knowledge there are only two examples of lanthanide-BDC coordination polymer structurally characterized. Here we present the crystal structure of Eu³⁺ coordination polymer, {Eu₂(*p*-BDC)₃(Phen)₂(H₂O)₂}_n (*p*-BDC=1,4-benzenedicarboxylate) obtained in agar medium, with intense red-luminescence under UV radiation. It is the first time to create such architectures for lanthanides and BDC by means of soft chemistry synthesis.

In $\{\text{Eu}_2(p\text{-BDC})_3(\text{Phen})_2(\text{H}_2\text{O})_2\}_n$ (see **Figure1**), each Eu³⁺ ion is eight-coordinated by five oxygens of *p*-BDC anions in monodentate fashion, one water ligand and two nitrogens of Phen in chelating fashion, respectively, resulting in a square antiprism coordination polyhedron. The Eu atom and its central-symmetric atom Eu* are linked by four bridges forming the binuclear unit and the stereo-multicyclic structure². When one carboxylate works as bridge and another carboxylate (with O3 and O4) at the other terminal of one μ_3 -*p*-BDC anion approaches to the europium atom that belongs to adjacent unit-cell, only O4 atom bonds with the Eu atom as the existence of Phen, and O3 forms hydrogen bond with the H atom of water from adjacent symmetric unit. When the carboxylate of one type BDC anion (*e.g.* O4 atom of μ_3 -*p*-BDC) integrates the binuclear coordination units into one dimensional chain, the carboxylate of another type BDC anion (*e.g.* μ_4 -*p*-BDC) polymerizes the one dimensional chains into two dimensional layer structure. The hydrogen bond between layers fabricates the structure further into three dimentional network.

^{*}E-mail: wang-mzo@bnu.edu.cn

Figure 1 Extended molecular structure of the coordination polymer (hydrogen atoms omitted for clarity)

Acknowledgments

We are grateful to State Key Project of Foundational Research of China (G1998061308) and the National Natural Science Foundation of China (G200071004) for support of this research.

References and Note

- (a) M. R. Theresa, E. Mohamed, F. Michael, K. Douglas, O. M. Yaghi, J. Am. Chem. Soc., 1999, 121, 1651; (b) L. Pan, N. W. Zheng, Y. G. Wu, S. Han, R. y. Yang, X. Y. Huang, J. Li, Inorg. Chem., 2001, 40, 828; (c) R. H. Groeneman, L. R. macGillivray, J. L. Atwood, Inorg. Chem., 1999, 38, 208; (d) E. Bakalbassis, P. Bergerat, O. Kahn, S. Jeannin, Y. Jeannin, Y. Dromzee, K. Guillot, Inorg. Chem., 1997, 36, 5684; (e) C. S. Hong, Y Do, Inorg. Chem., 1998, 37, 4470; (f) H. Fun, Raj. Y. S. Shnamuga Sundara, R. Xiong, J. Zuo, Z. Yu, X. You, J. Chem. Soc., Dalton Trans., 1999, 1915; (g) T. M. Reineke, M. Eddaoudi, M. O'keeffe, O. M. Yaghi, Angew. Chem., Int. Ed., 1999, 38, 2590.
- (a) L. P. Jin, M. Z. Wang, G. L. Cai, S. X. Liu, J. L. Huang, R. F. Wang, Science in China (Series B), 1995, 38, 1; (b) L. P. Jin, R. F. Wang, M. Z. Wang, G. L. Cai, S. X. Liu, J. L. Huang, Chem. J. Chin. Unvi., 1993, 14, 1195.
- 3 Crystallographic parameters have been deposited in the editorial office of CCL.

Received 5 April, 2002